Control of cyclic chromosome replication in Escherichia coli.
نویسندگان
چکیده
The biochemical basis for cyclic initiation of bacterial chromosome replication is reviewed to define the processes involved and to focus on the putative oscillator mechanism which generates the replication clock. The properties required for a functional oscillator are defined, and their implications are discussed. We show that positive control models, but not negative ones, can explain cyclic initiation. In particular, the widely accepted idea that DnaA protein controls the timing of initiation is examined in detail. Our analysis indicates that DnaA protein is not involved in the oscillator mechanism. We conclude that the generations of a single leading to cyclic initiation is separate from the initiation process itself and propose a heuristic model to focus attention on possible oscillator mechanisms.
منابع مشابه
Control of Chromosome and Plasmid Replication in Escherichia coli
Olsson, J. 2003. Control of chromosome and plasmid replication in Escherichia coli. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 838. 65 pp. Uppsala. ISBN. 91-5545627-8 Life is cellular. Cells grow and divide to give two new cells; this process is called the cell cycle. The chromosome in a bacterium is replicated int...
متن کاملMultiple DNA Binding Proteins Contribute to Timing of Chromosome Replication in E. coli
Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. DnaA associated with either ATP or ADP binds to a set of strong DnaA binding sites in oriC, whereas only DnaA...
متن کاملEstablishing a System for Testing Replication Inhibition of the Vibrio cholerae Secondary Chromosome in Escherichia coli
Regulators of DNA replication in bacteria are an attractive target for new antibiotics, as not only is replication essential for cell viability, but its underlying mechanisms also differ from those operating in eukaryotes. The genetic information of most bacteria is encoded on a single chromosome, but about 10% of species carry a split genome spanning multiple chromosomes. The best studied bact...
متن کاملA newly identified DNA replication terminus site, TerE, on the Escherichia coli chromosome.
To search for heretofore unidentified DNA replication termination (Ter) sites on the Escherichia coli chromosome, we screened the entire Kohara lambda bacteriophage library using as probes the four known 22-bp Ter sequences. We found a Ter site, which we named TerE, located at 23.2 min on the linkage map. TerE inhibits only counterclockwise DNA replication. Macroscopically, five Ter sites are l...
متن کاملCloning and optimization of phytase enzyme gene expression in Escherichia coli
Introduction Phytase is an enzyme that has the ability to break down phytic acid into myoinositol and mineral phosphate, and widely uses as an additive in animal foods. The aim of this study was to achieve a high level of bacterial phytase expression in PET26b expression host. Materials and Methods To generate the recombinant phytase enzyme, the target gene was introduced into the expression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiological reviews
دوره 55 3 شماره
صفحات -
تاریخ انتشار 1991